Contents

Chapter 1 Escherichia coli, Plasmids, and Bacteriophages

 Introduction

 Section I Escherichia coli
 Unit 1.1 Media Preparation and Bacteriological Tools
 Unit 1.2 Growth in Liquid Media
 Unit 1.3 Growth on Solid Media
 Unit 1.4 Selected Topics from Classical Bacterial Genetics

 Section II Vectors Derived from Plasmids
 Unit 1.5 Introduction to Plasmid Biology
 Unit 1.6 Minipreps of Plasmid DNA
 Unit 1.7 Large-Scale Preparation of Plasmid DNA
 Unit 1.8 Introduction of Plasmid DNA into Cells

 Section III Vectors Derived from Lambda and Related Bacteriophages
 Unit 1.9 Introduction to Lambda Phages
 Unit 1.10 Lambda as a Cloning Vector
 Unit 1.11 Plating Lambda Phage to Generate Plaques
 Unit 1.12 Growing Lambda-Derived Vectors
 Unit 1.13 Preparing Lambda DNA from Phage Lysates

 Section IV Vectors Derived from Filamentous Phages
 Unit 1.14 Introduction to Vectors Derived from Filamentous Phages
 Unit 1.15 Preparing and Using M13-Derived Vectors

 Section V Specialized Techniques
 Unit 1.16 Recombineering: Genetic Engineering in Bacteria Using Homologous Recombination

Chapter 2 Preparation and Analysis of DNA

 Introduction

 Section I Manipulation of DNA
 Unit 2.1A Purification and Concentration of DNA from Aqueous Solutions
 Unit 2.1B Purification of DNA by Anion-Exchange Chromatography
 Unit 2.2 Preparation of Genomic DNA from Mammalian Tissue
 Unit 2.3 Preparation of Genomic DNA from Plant Tissue
 Unit 2.4 Preparation of Genomic DNA from Bacteria

 Section II Resolution and Recovery of Large DNA Fragments
 Unit 2.5A Agarose Gel Electrophoresis
 Unit 2.5B Pulsed-Field Gel Electrophoresis
 Unit 2.6 Isolation and Purification of Large DNA Restriction Fragments from Agarose Gels

 Section III Resolution and Recovery of Small DNA Fragments
 Unit 2.7 Separation of Small DNA Fragments by Conventional Gel Electrophoresis
 Unit 2.8 Capillary Electrophoresis of DNA

 Section IV Analysis of DNA Sequences by Blotting and Hybridization
 Unit 2.9A Southern Blotting
 Unit 2.9B Dot and Slot Blotting of DNA
Chapter 3 Enzymatic Manipulation of DNA and RNA

Introduction

Section I Restriction Endonucleases
Unit 3.1 Digestion of DNA with Restriction Endonucleases

Section II Restriction Mapping
Unit 3.2 Mapping by Multiple Endonuclease Digestions
Unit 3.3 Mapping by Partial Endonuclease Digestions

Section III Enzymes for Modifying and Radioactively Labeling Nucleic Acids
Unit 3.4 Reagents and Radioisotopes Used to Manipulate Nucleic Acids
Unit 3.5 DNA-Dependent DNA Polymerases
Unit 3.6 Template-Independent DNA Polymerases
Unit 3.7 RNA-Dependent DNA Polymerases
Unit 3.8 DNA-Dependent RNA Polymerases
Unit 3.9 DNA-Independent RNA Polymerases
Unit 3.10 Phosphatases and Kinases
Unit 3.11 Exonucleases
Unit 3.12 Endonucleases
Unit 3.13 Ribonucleases
Unit 3.14 DNA Ligases
Unit 3.15 RNA Ligases

Section IV Construction of Hybrid DNA Molecules
Unit 3.16 Subcloning of DNA Fragments
Unit 3.17 Constructing Recombinant DNA Molecules by the Polymerase Chain Reaction

Section V Specialized Applications
Unit 3.18 Labeling and Colorimetric Detection of Nonisotopic Probes
Unit 3.19 Chemiluminescent Detection of Nonisotopic Probes
Unit 3.20 Recombinational Cloning

Chapter 4 Preparation and Analysis of RNA

Introduction

Section I Preparation of RNA from Eukaryotic and Prokaryotic Cells
Unit 4.1 Preparation of Cytoplasmic RNA from Tissue Culture Cells
Unit 4.2 Guanidine Methods for Total RNA Preparation
Unit 4.3 Phenol/SDS Method for Plant RNA Preparation
Unit 4.4 Preparation of Bacterial RNA
Unit 4.5 Preparation of Poly(A)^+ RNA

Section II Analysis of RNA Structure and Synthesis
Unit 4.6 S1 Analysis of Messenger RNA Using Single-Stranded DNA Probes
Unit 4.7 Ribonuclease Protection Assay
Unit 4.8 Primer Extension
Unit 4.9 Analysis of RNA by Northern and Slot Blot Hybridization
Unit 4.10 Identification of Newly Transcribed RNA

Chapter 5 Construction of Recombinant DNA Libraries
Introduction

Section I Overview of Recombinant DNA Libraries
Unit 5.1 Genomic DNA Libraries
Unit 5.2 cDNA Libraries

Section II Preparation of Insert DNA from Genomic DNA
Unit 5.3 Size Fractionation Using Sucrose Gradients
Unit 5.4 Size Fractionation Using Agarose Gels

Section III Preparation of Insert DNA from Messenger RNA
Unit 5.5 Conversion of mRNA into Double-Stranded cDNA
Unit 5.6 Ligation of Linkers or Adapters to Double-Stranded cDNA

Section IV Production of Genomic DNA and cDNA Libraries
Unit 5.7 Production of a Genomic DNA Library
Unit 5.8A Production of a Complete cDNA Library
Unit 5.9 Construction of Bacterial Artificial Chromosome (BAC/PAC) Libraries

Section V Amplification of Transformed or Packaged Libraries
Unit 5.10 Amplification of a Bacteriophage Library
Unit 5.11 Amplification of Cosmid and Plasmid Libraries

Chapter 6 Screening of Recombinant DNA Libraries
Introduction

Section I Plating Libraries and Transfer to Filter Membranes
Unit 6.1 Plating and Transferring Bacteriophage Libraries
Unit 6.2 Plating and Transferring Cosmid and Plasmid Libraries

Section II Hybridization with Radioactive Probes
Unit 6.3 Using DNA Fragments as Probes
Unit 6.4 Using Synthetic Oligonucleotides as Probes

Section III Purification of Bacteriophage, Cosmid, and Plasmid Clones
Unit 6.5 Purification of Bacteriophage Clones
Unit 6.6 Purification of Cosmid and Plasmid Clones

Section IV Screening with Antibodies
Unit 6.7 Immunoscreening of Fusion Proteins Produced in Lambda Plaques
Unit 6.8 Immunoscreening after Hybrid Selection and Translation

Section V Yeast Artificial Chromosome Libraries
Unit 6.9 Overview of Strategies for Screening YAC Libraries and Analyzing YAC Clones
Unit 6.10 Analysis of Isolated YAC Clones

Section VI Specialized Strategies for Screening Libraries
Unit 6.11 Use of Monoclonal Antibodies for Expression Cloning
Unit 6.12 Recombination-Based Assay (RBA) for Screening Bacteriophage Lambda Libraries

Chapter 7 DNA Sequencing
Introduction
Unit 7.1 DNA Sequencing Strategies
Unit 7.2 Constructing Nested Deletions for Use in DNA Sequencing
Unit 7.3 Preparation of Templates for DNA Sequencing
Unit 7.4A DNA Sequencing by the Dideoxy Method
Unit 7.4B Dideoxy DNA Sequencing with Chemiluminescent Detection
Unit 7.5 DNA Sequencing by the Chemical Method
Unit 7.6 Denaturing Gel Electrophoresis for Sequencing
Unit 7.7 Computer Manipulation of DNA and Protein Sequences

Chapter 8 Mutagenesis of Cloned DNA
Introduction
Unit 8.1 Oligonucleotide-Directed Mutagenesis without Phenotypic Selection
Unit 8.2A Mutagenesis with Degenerate Oligonucleotides: Creating Numerous Mutations in a Small DNA Sequence
Unit 8.2B Gene Synthesis: Assembly of Target Sequences Using Mutually Priming Long Oligonucleotides
Unit 8.3 Random Mutagenesis by PCR
Unit 8.4 Linker-Scanning Mutagenesis of DNA
Unit 8.5 Directed Mutagenesis Using the Polymerase Chain Reaction

Chapter 9 Introduction of DNA into Mammalian Cells
Introduction
Section I Transfection of DNA into Eukaryotic Cells
Unit 9.1 Calcium Phosphate Transfection
Unit 9.2 Transfection Using DEAE-Dextran
Unit 9.3 Transfection by Electroporation
Unit 9.4 Transfection of Cultured Eukaryotic Cells Using Cationic Lipid Reagents
Unit 9.5 Selection of Transfected Mammalian Cells

Section II Uses of Fusion Genes in Mammalian Transfection
Unit 9.6 Overview of Genetic Reporter Systems
Unit 9.7A Isotopic Assays for Reporter Gene Activity
Unit 9.7B Nonisotopic Assays for Reporter Gene Activity
Unit 9.7C Use of the A. Victoria Green Fluorescent Protein to Study Protein Dynamics in Vivo
Unit 9.8 Direct Analysis of RNA after Transfection

Section III Transduction of Genes Using Retrovirus Vectors
Unit 9.9 Overview of the Retrovirus Transduction System
Unit 9.10 Preparation of a Specific Retrovirus Producer Cell Line
Unit 9.11 Transient Transfection Methods for Preparation of High-Titer Retroviral Supernatants
Unit 9.12 Large-Scale Preparation and Concentration of Retrovirus Stocks
Unit 9.13 Detection of Helper Virus in Retrovirus Stocks
Unit 9.14 Retrovirus Infection of Cells In Vitro and In Vivo

Section IV Inactivation of Genes in Mammalian Cells
Unit 9.15 Human Somatic Cell Gene Targeting

Chapter 10 Analysis of Proteins
Introduction

Section I Quantitation of Proteins
Unit 10.1A Spectrophotometric and Colorimetric Determination of Protein Concentration
Unit 10.1B Quantitative Amino Acid Analysis

Section II Electrophoretic Separation of Proteins
Unit 10.2A One-Dimensional SDS Gel Electrophoresis of Proteins
Unit 10.2B One-Dimensional Electrophoresis Using Nondenaturing Conditions
Unit 10.3 Two-Dimensional Gel Electrophoresis Using the ISO-DALT System
Unit 10.4 Two-Dimensional Gel Electrophoresis
Unit 10.5 Overview of Digital Electrophoresis Analysis

Section III Detection of Proteins
Unit 10.6 Staining Proteins in Gels
Unit 10.7 Detection of Proteins on Blot Transfer Membranes
Unit 10.8 Immunoblotting and Immunodetection

Section IV Purification of Proteins by Conventional Chromatography
Unit 10.9 Gel-Filtration Chromatography
Unit 10.10 Ion-Exchange Chromatography
Unit 10.11A Immunoaffinity Chromatography
Unit 10.11B Metal-Chelate Affinity Chromatography

Section V Purification of Proteins by High-Performance Liquid Chromatography
Unit 10.12 HPLC of Peptides and Proteins: Preparation and System Set-Up
Unit 10.13 HPLC of Peptides and Proteins: Standard Operating Conditions
Unit 10.14 Reversed-Phase Isolation of Peptides

Section VI Specialized Applications
Unit 10.15 Purification of Recombinant Proteins and Study of Protein Interaction by Epitope Tagging

Unit 10.16 Immunoprecipitation
Unit 10.17 Synthesizing Proteins In Vitro by Transcription and Translation of Cloned Genes
Unit 10.18 Metabolic Labeling with Amino Acids
Unit 10.19 Isolation of Proteins for Microsequence Analysis
Unit 10.20 Capillary Electrophoresis of Proteins and Peptides
Unit 10.21 Overview of Peptide and Protein Analysis by Mass Spectrometry
Unit 10.22 Protein Identification and Characterization by Mass Spectrometry
Unit 10.23 Difference Gel Electrophoresis (DIGE) Using CyDye DIGE Fluor Minimal Dyes
Unit 10.24 Solution Radioimmunoassay of Proteins and Peptides
Chapter 11 Immunology

Introduction

Section I Immunoassays

Unit 11.1 Conjugation of Enzymes to Antibodies
Unit 11.2 Enzyme-Linked Immunosorbent Assays (ELISA)
Unit 11.3 Isotype Determination of Antibodies

Section II Preparation of Monoclonal Antibodies

Unit 11.4 Immunization of Mice
Unit 11.5 Preparation of Myeloma Cells
Unit 11.6 Preparation of Mouse Feeder Cells for Fusion and Cloning
Unit 11.7 Fusion of Myeloma Cells with Immune Spleen Cells
Unit 11.8 Cloning of Hybridoma Cell Lines by Limiting Dilution
Unit 11.9 Freezing and Recovery of Hybridoma Cell Lines
Unit 11.10 Production of Monoclonal Antibody Supernatant and Ascites Fluid
Unit 11.11 Purification of Monoclonal Antibodies

Section III Preparation of Polyclonal Antisera

Unit 11.12 Production of Polyclonal Antisera
Unit 11.13 In Vitro Antibody Production
Unit 11.14 Purification of Immunoglobulin G Fraction from Antiserum, Ascites Fluid, or Hybridoma Supernatant

Section IV Preparation of Antipeptide Antibodies

Unit 11.15 Introduction to Peptide Synthesis
Unit 11.16 Synthetic Peptides for Production of Antibodies that Recognize Intact Proteins

Section V Determination of Specific Antibody Titer and Isotype

Unit 11.17 Determination of the Specific Antibody Titer

Section VI Preparation and Use of Specialized Antibodies

Unit 11.18 Identification of Polyol-Responsive Monoclonal Antibodies for Use in Immunoaffinity Chromatography

Chapter 12 DNA-Protein Interactions

Introduction

Unit 12.1 Preparation of Nuclear and Cytoplasmic Extracts from Mammalian Cells
Unit 12.2 Mobility Shift DNA-Binding Assay Using Gel Electrophoresis
Unit 12.3 Methylation and Uracil Interference Assays for Analysis of Protein-DNA Interactions
Unit 12.4 DNase I Footprint Analysis of Protein-DNA Binding
Unit 12.5 UV Crosslinking of Proteins to Nucleic Acids
Unit 12.6 Purification of DNA-Binding Proteins Using Biotin/Streptavidin Affinity Systems
Unit 12.7 Detection, Purification, and Characterization of cDNA Clones Encoding DNA-Binding Proteins
Unit 12.8 Rapid Separation of Protein-Bound DNA from Free DNA Using Nitrocellulose Filters
Unit 12.9 Analysis of DNA-Protein Interactions Using Proteins Synthesized In Vitro from Cloned Genes

Unit 12.10 Purification of Sequence-Specific DNA-Binding Proteins by Affinity Chromatography
Unit 12.11 Determination of Protein-DNA Sequence Specificity by PCR-Assisted Binding-Site Selection

Unit 12.12 Yeast One-Hybrid Screening for DNA-Protein Interactions
Chapter 13 Yeast

Introduction

Section I Basic Techniques of Yeast Genetics
Unit 13.1 Preparation of Yeast Media
Unit 13.2 Growth and Manipulation of Yeast
Unit 13.3 Genome-Wide Transposon Mutagenesis in Yeast

Section II Yeast Vectors
Unit 13.4 Yeast Cloning Vectors and Genes
Unit 13.6 Yeast Vectors and Assays for Expression of Cloned Genes

Section III Manipulation of Yeast Genes
Unit 13.7 Introduction of DNA into Yeast Cells
Unit 13.8 Cloning Yeast Genes by Complementation
Unit 13.9 Manipulation of Plasmids from Yeast Cells
Unit 13.10 Manipulation of Cloned Yeast DNA

Section IV Preparation of Yeast DNA, RNA, and Proteins
Unit 13.11 Preparation of Yeast DNA
Unit 13.12 Preparation of Yeast RNA
Unit 13.13 Preparation of Protein Extracts from Yeast

Section V Schizosaccharomyces pombe
Unit 13.14 Overview of Schizosaccharomyces pombe
Unit 13.15 S. pombe Strain Maintenance and Media
Unit 13.16 Growth and Manipulation of S. pombe
Unit 13.17 Introduction of DNA into S. pombe Cells

Chapter 14 In Situ Hybridization and Immunohistochemistry

Introduction
Unit 14.1 Fixation, Embedding, and Sectioning of Tissues, Embryos, and Single Cells
Unit 14.2 Cryosectioning
Unit 14.3 In Situ Hybridization to Cellular RNA
Unit 14.4 Detection of Hybridized Probe
Unit 14.5 Counterstaining and Mounting of Autoradiographed In Situ Hybridization Slides
Unit 14.6 Immunohistochemistry
Unit 14.7 In situ Hybridization and Detection Using Nonisotopic Probes
Unit 14.8 In situ Polymerase Chain Reaction and Hybridization to Detect Low-Abundance Nucleic Acid Targets
Unit 14.9 Whole-Mount In Situ Hybridization and Detection of RNAs in Vertebrate Embryos and Isolated Organs
Unit 14.10 Principles and Application of Fluorescence Microscopy
Unit 14.11 Basic Confocal Microscopy
Unit 14.12 Measurement of In Situ Hybridization
Unit 14.13 Morphological, Biochemical, and Flow Cytometric Assays of Apoptosis
Unit 14.14 Whole-Mount Histochemical Detection of β-Galactosidase Activity
Unit 14.15 Overview of Image Analysis, Image Importing, and Image Processing using Freeware
Unit 14.16 Three-Dimensional Reconstruction of Tissues
Chapter 15 The Polymerase Chain Reaction

Introduction

Unit 15.1 Enzymatic Amplification of DNA by PCR: Standard Procedures and Optimization
Unit 15.2 Direct DNA Sequencing of PCR Products
Unit 15.3 Ligation-Mediated PCR for Genomic Sequencing and Footprinting
Unit 15.4 Molecular Cloning of PCR Products
Unit 15.5 Enzymatic Amplification of RNA by PCR (RT-PCR)
Unit 15.6 cDNA Amplification Using One-Sided (Anchored) PCR
Unit 15.7 Quantitation of Rare DNAs by PCR
Unit 15.8 High-Throughput Real-Time Quantitative Reverse Transcription PCR

Chapter 16 Protein Expression

Introduction

Section I Expression of Proteins in *Escherichia coli*
Unit 16.1 Overview of Protein Expression in *E. coli*
Unit 16.2 Expression Using the T7 RNA Polymerase/Promoter System
Unit 16.3 Expression Using Vectors with Phage 2 Regulatory Sequences
Unit 16.4A Introduction to Expression by Fusion Protein Vectors
Unit 16.4B Enzymatic and Chemical Cleavage of Fusion Proteins
Unit 16.5 Expression and Purification of lacZ and trpE Fusion Proteins
Unit 16.6 Expression and Purification of Maltose-Binding Protein Fusions
Unit 16.7 Expression and Purification of Glutathione-S-Transferase Fusion Proteins
Unit 16.8 Expression and Purification of Thioredoxin Fusion Proteins

Section II Expression of Proteins in Insect Cells Using Baculovirus Vectors
Unit 16.9 Overview of the Baculovirus Expression System
Unit 16.10 Maintenance of Insect Cell Cultures and Generation of Recombinant Baculoviruses
Unit 16.11 Expression and Purification of Recombinant Proteins Using the Baculovirus System

Section III Expression of Proteins in Mammalian Cells
Unit 16.12 Transient Expression of Proteins Using COS Cells
Unit 16.13 Expression and Purification of Epitope-Tagged Multisubunit Protein Complexes from Mammalian Cells
Unit 16.14 Inducible Gene Expression Using an Autoregulatory, Tetracycline-Controlled System
Unit 16.15 Overview of the Vaccinia Virus Expression System
Unit 16.16 Preparation of Cell Cultures and Vaccinia Virus Stocks
Unit 16.17 Generation of Recombinant Vaccinia Viruses
Unit 16.18 Characterization of Recombinant Vaccinia Viruses and Their Products
Unit 16.19 Gene Expression Using the Vaccinia Virus/T7 RNA Polymerase Hybrid System
Unit 16.20 Expression of Proteins Using Semliki Forest Virus Vectors
Unit 16.21 Overview of the HIV-1 Lentiviral Vector System
Unit 16.22 Generation of HIV-1-Based Lentiviral Vector Particles
Unit 16.23 Amplification Using CHO Cell Expression Vectors
Unit 16.24 Helper-Dependent Adenoviral Vectors

Chapter 17 Preparation and Analysis of Glycoconjugates

Introduction
Section I Special Considerations for Glycoproteins and Their Purification
Unit 17.1 Special Considerations for Glycoproteins and Their Purification
Unit 17.2 Special Considerations for Proteoglycans and Glycosaminoglycans and Their Purification
Unit 17.3 Special Considerations for Glycolipids and Their Purification

Section II Detection of Saccharides on Glycoconjugates
Unit 17.4 Metabolic Radiolabeling of Animal Cell Glycoconjugates
Unit 17.5 Chemical Labeling of Carbohydrates by Oxidation and Sodium Borohydride Reduction
Unit 17.6 Detection and Analysis of Proteins Modified by O-Linked N-Acetylglucosamine
Unit 17.7 Lectin Analysis of Proteins Blotted onto Filters
Unit 17.8 Detection of Glycophospholipid Anchors on Proteins
Unit 17.9 Direct Chemical Analysis of Glycoconjugates for Carbohydrates
Unit 17.10A Inhibition of N-Linked Glycosylation
Unit 17.10B Inhibition of Glycolipid Biosynthesis
Unit 17.11 Synthetic Glycosides as Primers of Oligosaccharide Biosynthesis and Inhibitors of Glycoprotein and Proteoglycan Assembly

Section III Release of Saccharides from Glycoconjugates
Unit 17.12 Sialidases
Unit 17.13A Endoglycosidase and Glycoamidase Release of N-Linked Oligosaccharides
Unit 17.13B Analysis of Glycosaminoglycans with Polysaccharide Lyases
Unit 17.14A Preparation of Glycopeptides
Unit 17.14B Detection of Individual Glycosylation Sites on Glycoproteins
Unit 17.15A \(\beta \)-Elimination for Release of O-Linked Glycosaminoglycans from Proteoglycans
Unit 17.15B \(\beta \)-Elimination for Release of O-GalNAc-Linked Oligosaccharides from Glycoproteins and Glycopeptides
Unit 17.16 Acid Hydrolysis for Release of Monosaccharides
Unit 17.17A Enzymatic Release of Oligosaccharides from Glycolipids
Unit 17.17B Endo\(\beta \)-Galactosidases and Keratanase

Section IV Analysis of Saccharides Released from Glycoconjugates
Unit 17.18 Analysis of Monosaccharides
Unit 17.19A Total Compositional Analysis by High-Performance Liquid Chromatography or Gas-Liquid Chromatography
Unit 17.19B Composition of Labeled Monosaccharides from Glycosaminoglycans
Unit 17.20 Analysis of Oligosaccharide Negative Charge by Anion-Exchange Chromatography
Unit 17.21A HPLC Methods for the Fractionation and Analysis of Negatively Charged Oligosaccharides and Gangliosides
Unit 17.21B Fractionation and Analysis of Neutral Oligosaccharides by HPLC
Unit 17.22A Nitrous Acid Degradation of Glycosaminoglycans
Unit 17.22B Analysis of Disaccharides and Tetrasaccharides Released from Glycosaminoglycans
Unit 17.23 Analysis of Sulfate Esters by Solvolysis or Hydrolysis

Chapter 18 Analysis of Protein Phosphorylation
Introduction
Unit 18.1 Overview of Protein Phosphorylation
Unit 18.2 Labeling Cultured Cells with \(^{32}P \) and Preparing Cell Lysates for Immunoprecipitation
Unit 18.3 Phosphoamino Acid Analysis
Unit 18.4 Analysis of Phosphorylation of Unlabeled Proteins
Unit 18.5 Detection of Phosphorylation by Enzymatic Techniques
Unit 18.6 Production of Antibodies That Recognize Specific Tyrosine-Phosphorylated Peptides
Unit 18.7 Assays of Protein Kinases Using Exogenous Substrates
Unit 18.8 Permeabilization Strategies to Study Protein Phosphorylation
<table>
<thead>
<tr>
<th>Chapter 19 Informatics for Molecular Biologists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Unit 19.1 Internet Basics for Biologists</td>
</tr>
<tr>
<td>Unit 19.2 Sequence Databases: Integrated Information Retrieval and Data Submission</td>
</tr>
<tr>
<td>Unit 19.3 Sequence Similarity Searching Using the BLAST Family of Programs</td>
</tr>
<tr>
<td>Unit 19.4 Protein Databases on the Internet</td>
</tr>
<tr>
<td>Unit 19.5 Basic Protein Sequence Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 20 Analysis of Protein Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Unit 20.1 Interaction Trap/Two-Hybrid System to Identify Interacting Proteins</td>
</tr>
<tr>
<td>Unit 20.2 Affinity Purification of Proteins Binding to GST Fusion Proteins</td>
</tr>
<tr>
<td>Unit 20.3 Phage-Based Expression Cloning to Identify Interacting Proteins</td>
</tr>
<tr>
<td>Unit 20.4 Surface Plasmon Resonance for Measurements of Biological Interest</td>
</tr>
<tr>
<td>Unit 20.5 Detection of Protein-Protein Interactions by Coprecipitation</td>
</tr>
<tr>
<td>Unit 20.6 Identification of Protein Interactions by Far Western Analysis</td>
</tr>
<tr>
<td>Unit 20.7 Two-Hybrid Dual Bait System</td>
</tr>
<tr>
<td>Unit 20.8 Interaction Trap/Two-Hybrid System to Identify Loss-of-Interaction Mutant Proteins</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 21 Chromatin Assembly and Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Unit 21.1 Micrococcal Nuclease Analysis of Chromatin Structure</td>
</tr>
<tr>
<td>Unit 21.2 Separation of Histone Variants and Post-Translationally Modified Isoforms by Triton/Acetic Acid/Urea Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>Unit 21.3 Chromatin Immunoprecipitation for Determining the Association of Proteins with Specific Genomic Sequences In Vivo</td>
</tr>
<tr>
<td>Unit 21.4 DNase I and Hydroxyl Radical Characterization of Chromatin Complexes</td>
</tr>
<tr>
<td>Unit 21.5 Isolation of Histones and Nucleosome Cores from Mammalian Cells</td>
</tr>
<tr>
<td>Unit 21.6 Assembly of Nucleosomal Templates by Salt Dialysis</td>
</tr>
<tr>
<td>Unit 21.7 Chromatin Assembly Using Drosophila Systems</td>
</tr>
<tr>
<td>Unit 21.8 Analysis of Protein Co-Occupancy by Quantitative Sequential Chromatin Immunoprecipitation</td>
</tr>
<tr>
<td>Unit 21.9 Defining In Vivo Targets of Nuclear Proteins by Chromatin Immunoprecipitation and Microarray Analysis</td>
</tr>
<tr>
<td>Unit 21.10 Identifying Chromosomal Targets of DNA-Binding Proteins by Sequence Tag Analysis of Genomic Enrichment (STAGE)</td>
</tr>
<tr>
<td>Unit 21.11 Mapping Chromatin Interactions by Chromosome Conformation Capture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 22 Nucleic Acid Arrays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Unit 22.1 Overview of Nucleic Acid Arrays</td>
</tr>
<tr>
<td>Unit 22.2 Preparation of mRNA for Expression Monitoring</td>
</tr>
</tbody>
</table>
Chapter 23 Manipulating the Mouse Genome

Introduction

Unit 23.1 Overview of Gene Targeting by Homologous Recombination
Unit 23.2 Mouse Embryo Fibroblast (MEF) Feeder Cell Preparation
Unit 23.3 Mouse Embryonic Stem (ES) Cell Culture
Unit 23.4 Mouse Embryonic Stem (ES) Cell Isolation
Unit 23.5 Production of a Heterozygous Mutant Cell Line by Homologous Recombination (Single Knockout)
Unit 23.6 Production of a Homozygous Mutant Embryonic Stem Cell Line (Double Knockout)
Unit 23.7 Chimeric Mouse Production by Microinjection
Unit 23.8 Mouse Colony Management
Unit 23.9 Transgenic Mouse Production By Zygote Injection
Unit 23.10 Transgenic Mouse Colony Management
Unit 23.11 Modification and Production of BAC Transgenes
Unit 23.12 Regulation of Transgene Expression Using Tetracycline

Chapter 24 Generation and Use of Combinatorial Libraries

Unit 24.1 Overview of Agents from Combinatorial Nucleic Acid and Protein Libraries
Unit 24.2 Design, Synthesis, and Amplification of DNA Pools for Construction of Combinatorial Pools and Libraries
Unit 24.3 In Vitro Selection of RNA Aptamers to a Protein Target by Filter Immobilization
Unit 24.4 Peptide Aptamers: Dominant "Genetic" Agents for Forward and Reverse Analysis of Cellular Processes
Unit 24.5 Protein Selection Using mRNA Display

Chapter 25 Discovery and Analysis of Differentially Expressed Genes in Single Cells and Cell Populations

Introduction

Section A Nucleic Acid Amplification from Individual Cells
Unit 25A.1 Laser Capture Microdissection
Unit 25A.2 Preparation of Single Cells from Solid Tissues for Analysis by PCR

Section B Molecular Methods for Discovery of Differentially Expressed Genes
Unit 25B.1 Production of a Subtracted cDNA Library
Unit 25B.2 PCR-Based Subtractive cDNA Cloning
Unit 25B.3 Differential Display of mRNA by PCR
Unit 25B.4 Restriction-Mediated Differential Display (RMDD)
Unit 25B.5 AFLP-Based Transcript Profiling
Unit 25B.6 Serial Analysis of Gene Expression (SAGE)
Unit 25B.7 Representational Difference Analysis
Unit 25B.8 Gene Expression Analysis of a Single or Few Cells
Chapter 26 Gene Silencing
Introduction
Unit 26.1 Overview of RNA Interference and Related Processes
Unit 26.2 Gene Silencing by RNAi in Mammalian Cells
Unit 26.3 RNA Interference in *Caenorhabditis Elegans*
Unit 26.4 Cloning of Small RNA Molecules
Unit 26.5 RNA Interference in Cultured *Drosophila* Cells
Unit 26.6 RNAi in Transgenic Plants

Chapter 27 RNA-Protein Interactions
Introduction
Unit 27.1 Agarose Gel Separation/Isolation of RNA-Protein Complexes
Unit 27.2 Identification of RNA Binding Proteins by UV Cross-Linking
Unit 27.3 Purification of Functional RNA-Protein Complexes using MS2-MBP
Unit 27.4 RNA Immunoprecipitation for Determining RNA-Protein Associations In Vivo

Chapter 28 Mammalian Cell Culture
Introduction
Unit 28.1 Preparation, Culture, and Immortalization of Mouse Embryonic Fibroblasts
Unit 28.2 Isolation and Immortalization of Lymphocytes
Unit 28.3 Establishment and Culture of Human Skin Fibroblasts

Chapter 29 Mouse Phenotyping
Introduction

Section A General Considerations in Mouse Phenotyping
Unit 29A.1 Uses of Forward and Reverse Genetics in Mice to Study Gene Function
Unit 29A.2 Minimizing Variation Due to Genotype and Environment

Section B Metabolic Exploration of the Mouse
Unit 29B.1 Evaluation of Energy Homeostasis

Appendix 1 Standard Measurements, Data, and Abbreviations
1A Common Abbreviations
1B Useful Measurements and Data
1C Characteristics of Amino Acids
1D Characteristics of Nucleic Acids
1E Radioactivity
1F Safe Use of Radioisotopes
1G Centrifuges and Rotors
1H Safe Use of Hazardous Chemicals
1I Commonly Used Detergents
1J Common Conversion Factors
1K Compendium of Drugs Commonly Used in Molecular Biology Research
Appendix 2 Commonly Used Reagents and Equipment
 2 Commonly Used Reagents and Equipment

Appendix 3 Commonly Used Techniques in Biochemistry and Molecular Biology
 3A Detection and Quantitation of Radiolabeled Proteins and DNA in Gels and Blots
 3B Silanizing Glassware
 3C Dialysis and Ultrafiltration
 3D Quantitation of DNA and RNA with Absorption and Fluorescence Spectroscopy
 3E Introduction of Restriction Enzyme Recognition Sequences by Silent Mutation
 3F Techniques for Mammalian Cell Tissue Culture
 3G Importing Biological Materials
 3H Kinetic Assay Methods
 3I Statistics for the Molecular Biologist: Group Comparisons

Appendix 4 Suppliers
 4 Selected Suppliers of Reagents and Equipment

Appendix 5 Vectors
 5 Vectors